Overview Design & Implementation Case Study Conclusion Acknowledgment References

Towards Automatic Inference of Task Hierarchies
in Complex Systems

Haohui Mai® Chongnan Gao! Xuezheng Liu* Xi Wang?®
Geoffrey M. Voelker*

University of lllinois at Urbana-Champaign® MIT CSAILS
Microsoft Research Asia¥ Tsinghua University

University of California, San Diego™

December 7, 2008

Overview

Motivation

@ System models are valuable
e Visualize the design and the implementation
e Understand the structures of components and their dependency
o Present dependability measures in an intuitive way
e Reason and verify the system
@ Developers can represent the system as a hierarchical task
model
e Encapsulate implementation details with high-level tasks

o Allow developers to address dependability problems at various
task granularities

Overview

Our work

@ Explored how well the hierarchical task models can be
automatically inferred

o With minimal or no manual assistance

@ Designed and Implemented Scalpel to automatically infer
hierarchical task models in complex systems
@ Applied Scalpel to two systems

o Apache HTTP Server
o PacificA distributed storage system [Lin et al. , 2008]
e Encouraging results

Overview

Design & Implementation

Case Study

Conclusion Acknowledgment

Challenges

@ All should be done automatically in complex systems

@ lIdentify appropriate task boundaries

@ Associate dependencies among tasks correctly

@ Recover the hierarchical structure among tasks

. Logic Local Commit
Session:: Replica:: RpcCient::
RecvPacket Mutate RpcAsync
CallChain
Session::
LogicReplica:: WSASend
Receive Packet
MutationAck
PAThreadPool:: Session::
ThreadInternal WSASend .
::DoWork Packet RpcCient::
LogicReplica:: RpcCall
Receive Reply
Worker > MutationAck

Remote Commit Acknowledgment

References

Design & Implementation

How it works

Collecting ifvi
: Identifying
Execution _) Leaf Tasks
Traces
J

Inferring
Hierarchical
Structure

Constructing
Causal Graph

Overview Design & Implementation Case Study Conclusion Acknowledgment References

Collecting Execution Traces

@ Trace down calls and their parameters of
e Synchronization primitives (signal and wait)
e Socket communication (send and recv)
@ Leverage library-based record & replay tool named
R2 [Guo et al., 2008] in our implementation

Design & Implementation

|dentifying Leaf Tasks

Leaf task: smallest unit of work in a task model

Paritition the execution traces with synchronization points
Synchronization point: where two threads synchronize their
execution and establish a happens-before relation

Rationale

e Dependency only occurs at boundaries
o Relatively independent and self-contained

Recv(commit_acR); Wait(queue_Llock);

enqueue(element);
++seq_number;

SetEvent(gevent);

Overview Design & Implementation Case Study Conclusion Acknowledgment

Constructing Causal Graph

@ Use happens-before relation to infer causal dependency
@ Distinguish causal dependency and occasional “run-after”
relation

e Producer - Consumer

e Mutual exclusion
@ Heuristics

o OS-provided queues (I/O completion ports)

o Notification mechanisms (events)

o Efficient to catch shared queues

Wait(write_lock);

References

saveToDisk(data); (Recv(commit_ack);

Send(commit_acR); ++seq_number;

Overview Design & Implementation Case Study Conclusion Acknowledgment References

Inferring Hierarchical Structure

o Idea: Identifying frequent patterns E
in causal graph) K

@ Replace frequent patterns with W

“super nodes” recursively

o ldentifying frequent patterns E
e Canonize sub graph and serialize q‘
it deterministically

Vi
Y
o Use hash functions for exact m"B')W
matching
<

ABC(D)E

u]
o)
I
i
it

Case Study

Case Study

o Effectiveness of the task models for debugging
o Effectiveness of capturing developers’ intuition

@ All experiments on machines with 2.0 GHz Xeon dual-core
CPUs, 4 GB memory, running Windows Server 2003 Service
Pack 2, and interconnected via a 1 Gb switch

Overview Design & Implementation Case Study Conclusion Acknowledgment References

Case Study: Performance Bug in PacificA (1)

@ Performance is not satisfactory under stress tests

@ Task level profiling based on inferred task models
@ Use a top-down approach to identify the problem
e Use a profiler to collect performance numbers

e Latency
o Network bandwidth
o CPU cycles

o Aggregate profiling data in a per-task manner for each layer

Configuration
Manager
(Paxos)

Data
Replication
(2PC)

Liveness
Monitoring

Overview Design & Implementation

Case Study

Conclusion Acknowledgment

Case Study: Performance Bug in PacificA (I1)

@ The committing task could not saturate network bandwidth,

while at the same time the CPU usage remained low

_ Logic . Local Commit
Session:: Replica:: RpcCient::
RecvPacket Mutate RpcAsync
CallChain
Session::
LogicReplica:: WSASend
Receive Packet
MutationAck

PAThreadPool::

Threadinternal
::DoWork

Worker

LogicReplica::
Receive
MutationAck

Session::
WSASend
Packet

RpcCient::
RpcCall
Reply

Remote Commit Acknowledgment

References

Overview Design & Implementation Case Study

Conclusion Acknowledgment References

Case Study: Performance Bug in PacificA (I11)

Time of RPC calls (1 time unit = 10ms)

@ Sender threads will
block at a call to
sleep() for 1 second

Thread ID

0 50 100 150 200 250 300

¢Thr-1 mThr2 AThr-3 xThr-4

int Session::WSASendPacket (NetworkStream * pkt) {
CAutoLock guard(_send_lock);

while (_send_size > (64 << 20)) // 64 MB
Sleep (1000);

int rt = WSASend(_socket, buf, buf_num,
&bytes, 0, (OVERLAPPED*)ce, O0);

Case Study

Case Study: Performance Bug in PacificA (V)

@ Root cause: there is no flow control mechanism at RPC layer
when it uses asynchronous communication

e Thread sends messages in a non-blocking fashion

o Network layer blocks the thread when the internal buffer is full

o Threads will all be blocked by the network layer synchronously
at high workload

@ Caused by poor interactions across software layers

@ A clear hierarchical model helped developers to identify the
location of the bug and also understand its root cause

Overview Design & Implementation Case Study Conclusion Acknowledgment References

Case Study: Task Model of Apache HTTP Server

@ Successfully capture the Apache service cycle for SVN
checkout operations

winnt_ ap_core_
accept_2 input_filter

svn_io_
file_read

winnt_get_
winnt connection
accept_1 svn_io_

file_getc

mpm_get_ mpm_recycle_
completion_ completion_ ap_linger
context context ing_close

Case Study

Case Study: Statistics

Apache PacificA
SLOC 819676 54458
Leaf Tasks 423952 10636
Events 0 47
IOCP 23 16
Socket 527 77
Mutex 210472 4950
Same thread 193972 11304
Running Time: Extracting Task Models 5.95s 32.02s
Running Time: Native run 9.66s 20.79s
Running Time: Execution Time 10.00s 28.36s
Overhead 3.52% 36.41%

Conclusion

Conclusion & Future Work

@ Hierarchical task models of complex systems can be inferred
with few or no annotations
e Future work
o Extend the trace collecting method to collect memory
operations
e More effective heuristics to prune “run-after” cases
e Experiment more graph mining algorithm for recovering task
hierarchies
o Evaluate more systems

Acknowledgment

Acknowledgment
@ Our colleague Wenguang Chen for valuable feedback and
discussions
@ Zhenyu Guo for the R2 work
@ Wei Lin and other PacificA developers

@ Support from System Research Group in Microsoft Asia and
High Performance Computing Group in Tsinghua University

Overview

Design & Implementation Case Study Conclusion Acknowledgment References

References

Guo, Zhenyu, Wang, Xi, Tang, Jian, Liu, Xuezheng, Xu, Zhilei, Wu, Ming, Kaashoek, M. Frans, & Zhang,

Zheng. 2008.
R2: An Application-Level Kernel for Record and Replay.
In: OSDI '08: Proceedings of the 8th symposium on Operating systems design and implementation.

Lin, Wei, Yang, Mao, Zhang, Lintao, & Zhou, Lidong. 2008 (February).

PacificA: Replication in Log-Based Distributed Storage Systems.
Tech. rept. MSR-TR-2008-25. Microsoft Research Asia

verview

esign mplementation ase

u

onclusion cknowledgmen’

Collect Execution Traces and Identify Leaf Tasks

Acceptor “ 3 =>4 3 =
ST X

- -

i -
Lt .

winnt_accept() {
while (..) {

w

Wait(qwait_event);

AcceptEx(conn);

4 Wait(conn);

PostQueue(ThrDispatch);

worker_main() {
while (..) {

2 winnt_get_connection();
mpm_recycle_completion_context();

7 GetQueue(ThrDispatch);

ap_process_connection();

L

ererences

~ Overview Design & Implementation ~ Case Study ~ Conclusion ~ Acknowledgment ~ References

Constructing Causal Graph

Acceptor "3%4-—“3»4
-

[~
T T

- -
PRt e "

winnt_accept() { worker_main() {
while (..) { while (..) {

-

2 winnt_get_connection();
mpm_recycle_completion_context();

7 GetQueue(ThrDispatch);

3 Wait(qwait_event);

AcceptEx(conn);

a
“

4 Wait(conn); ap_process_connection();

PostQueue(ThrDispatch);

u]
o)

1

n
it
)
»
i)

~ Overview Design & Implementation ~ Case Study ~ Conclusion ~ Acknowledgment ~ References
Inferring Hierarchical Structure
Acceptor

Worker

4
.
\

winnt_accept() {
while (..) {

worker_main() {

while (..) {
& ;t.innt_get_connection();
mpm_recycle_completion_context();
3 Wait(qwait_event);
L cheptEx(conn); J
4 Wait(conn);

-]
7 GetQueue(ThrDispatch);
PostQueue(ThrDispatch);
}
i

ap_process_connection();

	Overview
	Design & Implementation
	Case Study
	Conclusion
	Acknowledgment
	References

